Tag Archives: Maryland

Florence Weakens to a Tropical Storm

Former Hurricane Florence weakened to a tropical storm on Thursday.  At 11:00 p.m. EDT on Thursday the center of Tropical Storm Florence was located at latitude 25.1°N and longitude 49.8°W which put it about 1035 miles (1665 km) east-southeast of Bermuda.  Florence was moving toward the west-northwest at 7 m.p.h. (11 km/h).  The maximum sustained wind speed was 70 m.p.h. (110 km/h) and there were wind gusts to 85 m.p.h. (135 km/h).  The minimum surface pressure was 993 mb.

An upper level trough west of former Hurricane Florence produced strong southwesterly winds which blew across the top of the circulation.  Those winds caused strong vertical wind shear and Florence weakened into a tropical storm.  Thunderstorms dissipated in rainbands in the western half of the tropical storm.  The ring of thunderstorms around the eye weakened and the western side of the eyewall was disrupted.  However, a distinct low level center of circulation persisted.  Thunderstorms northeast of the center still generated upper level divergence which pumped mass away to the northeast.

Tropical Storm Florence could weaken further on Friday because it will still be in the area of strong vertical wind shear.  However, as long as the lower part of the circulation remains intact, Tropical Storm Florence will be likely to strengthen during the weekend.  Florence is currently over water where the Sea Surface Temperature is near 28°C.  It will move over even warmer water during the weekend.  When Florence moves farther west, it will move into an area where the upper level winds are weaker and the wind shear will decrease.  Tropical Storm Florence is likely to intensify back into a hurricane during the weekend.

Tropical Storm Florence will move south of the subtropical high over the Atlantic Ocean.  The high will steer Florence in a generally west-northwesterly direction.  On its anticipated track, Florence could be southeast of Bermuda by Monday.  Florence could approach the east coast of the U.S. later next week.

Tropical Storm Maria Spins Up Quickly, Watches Issued for Leeward Islands

Tropical Storm Maria spun up quickly on Saturday and Watches were issued for the Northern Leeward Islands.  At 5:00 p.m. EDT on Saturday the center of Tropical Storm Maria was located at latitude 12.3°N and longitude 52.6°W which put it about 620 miles (1000 km) east-southeast of the Lesser Antilles.  Maria was moving toward the west at 20 m.p.h. (32 km/h).  The maximum sustained wind speed was 50 m.p.h. (80 km/h) and there were wind gusts to 65 m.p.h. (105 km/h).  The minimum surface pressure was 1002 mb.

A Hurricane Watch was in effect for Antigua, Barbuda, St. Kitts, Nevis and Montserrat.  A Tropical Storm Watch was in effect for St. Lucia, Martinique, Guadeloupe, Dominca, Barbados, St. Vincent and the Grenadines.

The circulation of Tropical Storm Maria organized quickly on Saturday.  A primary rainband wrapped most of the way around the center of circulation.  Thunderstorms in the core of the circulation generated upper level divergence which pumped mass away from the tropical storm.  Numerous additional bands of showers and thunderstorms developed outside the core of the circulation.

Tropical Storm Maria will move through and environment that will be favorable for intensification.  Maria will move over water where the Sea Surface Temperature is near 29°C.  The upper level winds are weak and there is little vertical wind shear.  Tropical Storm Maria could intensify rapidly during the next day or two.  Maria is likely to become a hurricane on Sunday.  Maria could strengthen into a major hurricane early next week.

The subtropical ridge over the Atlantic Ocean has been steering Tropical Storm Maria quickly toward the west.  The ridge is forecast to weaken slightly during the next several days and Tropical Storm Maria will move more toward the west-northwest.  Maria could reach the northern Leeward Islands within 48 hours.  Maria could be near Puerto Rico in about three days.  Maria will move over some of the same places that were seriously damaged by Hurricane Irma.  Maria could severely impact recovery efforts in that region.

Elsewhere over the tropical Atlantic Hurricane Jose moved slowly toward the north southeast of the U.S. and Tropical Storm Lee formed over the eastern Atlantic Ocean.  At 5:00 p.m. EDT on Saturday the center of Hurricane Jose was located at latitude 28.9°N and longitude 71.9°W which put it about 485 miles (780 km) south-southeast of Cape Hatteras, North Carolina.  Jose was moving toward the north at 6 m.p.h. (10 km/h).  The maximum sustained wind speed was 80 m.p.h. (130 km/h) and there were wind gusts to 95 m.p.h. (155 km/h).  The minimum surface pressure was 973 mb.

At 5:00 p.m. EDT on Saturday the center of Tropical Storm Lee was located at latitude 12.6°N and longitude 34.2°W which put it about 720 miles (1160 km) west-southwest of the Cabo Verde Islands.  Lee was moving toward the west at 10 m.p.h. (16 km/h).  The maximum sustained wind speed was 40 m.p.h. (65 km/h) and there wind gusts to 50 m.p.h. (80 km/h).  The minimum surface pressure was 1007 mb.

Hurricane Jose Turns Back Toward U.S.

Hurricane Jose completed the long slow clockwise loop it made this week over the Atlantic Ocean and it turned back toward the U.S.  At 5:00 p.m. EDT on Friday the center of Hurricane Jose was located at latitude 27.1°N and longitude 70.3°W which put it about 640 miles (1025 km) southeast of Cape Hatteras, North Carolina.  Jose was moving toward the northwest at 10 m.p.h. (16 km/h).  The maximum sustained wind speed was 75 m.p.h. (120 km/h) and there were wind gusts to 90 m.p.h. (145 km/h).  The minimum surface pressure was 983 mb.

An eye appeared to be forming at the center of Hurricane Jose as the primary rainband wrapped around the eastern and northern portions of the developing eye.  The strongest winds were occurring in that rainband.  Additional bands of showers and thunderstorms were revolving around the eastern half of the circulation.  There were fewer showers and thunderstorms in the western half of the circulation.

Hurricane Jose is moving over the part of the Atlantic Ocean that the hurricane traversed several days ago.  So, Jose is moving over cooler water that it mixed to the surface when it moved over the area the first time.  Hurricane Jose will soon move northwest of its previous track and it will move over water where the Sea Surface Temperature is near 30°C.  The upper level winds will be weak and there will be little vertical wind shear.  Hurricane Jose will strengthen during the weekend and it could intensify rapidly once the eye and eyewall are fully formed.

After a few days of weak steering currents the large subtropical high pressure system over the Atlantic Ocean has started to steer Hurricane Jose toward the northwest.  A general northwesterly motion is forecast to continue for another 24 to 36 hours.  At that time Jose will reach the western end of the high and it will turn more toward the north.  On its anticipated track Hurricane Jose could be near the Outer Banks of North Carolina in two or three days.  It is still too early to know if the center of Hurricane Jose will move into the U.S.

Hurricane Hermine Making Landfall in North Florida

After intensifying into a hurricane on Thursday, Hurricane Hermine is making landfall near St. Marks, Florida.  At midnight EDT the center of Hurricane Hermine was located at latitude 29.8°N and longitude 84.2°W which put it about 20 miles (30 km) south of St. Marks, Florida.  Hermine was moving toward the north-northeast at 14 m.p.h. (22 km/h).  The maximum sustained wind speed was 80 m.p.h. (130 km/h) and there were wind gusts to 95 m.p.h. (155 km/h).  The minimum surface pressure was 984 mb.

A Hurricane Warning is in effect from Suwannee River to Mexico Beach, Florida.  A Hurricane Watch is in effect from Anclote River to Suwannee River and from Mexico Beach to the Walton County/Bay County line.  A Tropical Storm Warning is in effect from Englewood to Suwannee River and from Mexico Beach to the Walton County/Bay County line.  A Tropical Storm Warning is also in effect from the Flagler County/Volusia County line to Duck, North Carolina including Pamlico and Albemarle Sounds.  A Tropical Storm Watch is in effect from Duck, North Carolina to Sandy Hook, New Jersey including the Chesapeake Bay from Smith Point southward and southern Delaware Bay.

The circulation of Hurricane Hermine organized quickly on Thursday.  It developed an eye with a mostly complete eyewall.  Spiral rainbands developed with strong winds in the eastern half of the circulation.  Upper level divergence to the east of Hermine pumped out mass and allowed the surface pressure to decrease.  The circulation is still asymmetrical with most of the stronger winds east of the center, but it looks a lot more typical of hurricanes that move toward the northern coast of the Gulf of Mexico.

Hurricane Hermine will weaken after it makes landfall.  It could interact with a cold front moving into the southeastern U.S.  It is possible that Hermine could develop a hybrid structure that is part tropical and part extratropical.  Hermine could have winds to tropical storm force as it passes over the Mid-Atlantic coast.  The stronger winds are likely to be out over the Atlantic Ocean and winds should be weaker farther inland.

An upper level trough is steering Hurricane Hermine toward the north-northeast and a general northeasterly motion is expected to continue for another 36 hours.  Later in the weekend a surface high pressure system could move north of Hermine and stall its progress.  Hermine could be stationary for a time.  On its anticipated track center of Hermine is likely to pass east of Tallahassee, Florida.  The center could pass north of Savannah, Georgia before coming near Charleston, South Carolina.  Hermine is likely to move near Cape Hatteras, North Carolina and out into the Atlantic Ocean.

Hurricane Hermine is capable of causing regional minor wind damage.  It is likely to cause widespread power outages.  The coast of the northeastern Gulf of Mexico is susceptible to storm surges and high water will effect that area overnight.  Locally heavy rainfall will create the potential for flooding.  When rainbands move ashore, wind shear could spin up tornadoes.  As Hermine moves near the Mid-Atlantic coast, easterly winds could cause water rises.

The Hurricane Intensity Index (HII) for Hurricane Hermine is 11.5.  The Hurricane Size Index (HSI) is 14.0.  The Hurricane Wind Intensity SIze Index (HWISI) is 25.5.  These indices are very similar to the ones for Hurricane Isaac before it hit the coast of Louisiana n 2012.  The HII for Isaac was 11.5.  Its HSI was 16.7 and its HWISI was 28.2.  This means that Hurricane Hermine is as strong and just smaller than Hurricane Isaac was just before it made landfall.  Hurricane Isaac did hit a more populated and more built up region.  Hurricane Isaac did 970 million dollars worth of insured damage.  It caused 407 million dollars to be paid out for flood insurance.  It is estimated that Hurricane Isaac caused 2.35 billion dollars worth of damage in the U.S.

Tropical Storm Hermine Strengthens, Hurricane Warning Issued

Tropical Storm Hermine strengthened on Wednesday evening and a Hurricane Warning was issued for a portion of the northern Florida coast.  A Hurricane Warning was in effect for the portion of the coast from Suwannee River to Mexico Beach, Florida.  A Hurricane Watch and a Tropical Storm Warning was in effect for the portions of the coast from Anclote River to Suwannee River and from Mexico Beach to Destin, Florida.  The Tropical Storm Watch was extended farther up the Mid-Atlantic coast.  The Tropical Storm Watch was in effect for the portion of the coast from Marineland, Florida to South Santee River, South Carolina.

At 11:00 p.m. EDT on Wednesday the center of Tropical Storm Hermine was located at latitude 25.8°N and longitude 87.0°W which put it about 295 miles (475 km) south-southwest of Apalachicola, Florida.  Hermine was moving toward the north-northeast at 10 m.p.h. (16 km/h).  The maximum sustained wind speed was 60 m.p.h. (95 km/h) and there were wind gusts to 75 m.p.h. (120 km/h).  The minimum surface pressure was 998 mb.

The circulation of Tropical Storm Hermine became better organized on Wednesday, but it is still not really well organized.  A tighter center of circulation developed.  However, the wind field is still asymmetrical.  The stronger winds are mainly east of the center and the winds are weaker in the western half of the circulation.  An area of strong thunderstorms developed near the center and another cluster of thunderstorms persisted southwest of the center.  There are not many thunderstorms northwest of the center.  There are some spiral rainbands, but they are fragmented.

Tropical Storm Hermine is in an environment that is favorable for intensification.  It is moving over water where the Sea Surface Temperature is near 30°C.  The upper level flow pattern is enhancing the divergence of mass to the northeast of Hermine.  The enhanced upper level divergence pumped out enough mass to allow the surface pressure to decrease by a few millibars on Wednesday evening.  Tropical Storm Hermine is expected to continue to intensify on Thursday and it should become a hurricane before it makes landfall on Thursday night.

The upper level ridge that was blocking a northward motion of Hermine has weakened.  So, the tropical storm has begun to more toward the north-northeast.  An upper level trough is expected to steer Hermine a little faster toward the northeast on Thursday.  On its anticipated track Hermine could make landfall somewhere between Apalachicola and Tarpon Springs, Florida on Thursday night.  After it moves across northeast Florida, Hermine could move near the coast of Carolinas on Friday.

Hermine is likely to be a hurricane when it makes landfall on Thursday night.  The core of the circulation which will contain the highest winds is likely to be fairly small and Hermine is likely to cause localized minor wind damage.  There will undoubtedly be power outages.  The coastline around the northeastern Gulf of Mexico is vulnerable to storm surges and Hermine will also produce a storm surge which could range up to 7 to 8 feet (2 to 2.5 meters) near where the center crosses the coast.  The storm surge will be less farther away from where the center makes landfall.  In addition Hermine will generate locally heavy rain which could cause fresh water flooding.  Directional wind shear associated with rainbands moving inland could spin up tornadoes in the eastern half of Hermine.