Tag Archives: New York

Post Tropical Storm Hermine Edges Toward Long Island

The low pressure system that was Tropical Storm Hermine began to move back toward the west on Monday and the motion brought it closer to Long Island.  At 8:00 p.m. EDT on Monday the center of Post Tropical Storm Hermine was located at latitude 39.3°N and longitude 70.3°W which put it about 135 miles south of Nantucket Island.  Hermine was moving toward the west-northwest at 9 m.p.h. (15 km/h).  The maximum sustained wind speed was 70 m.p.h. (110 km/h) and there were wind gusts to 85 m.p.h. (135 km/h).  The minimum surface pressure was 997 mb.

A Tropical Storm Warning remains in effect for the portion of the coast from Fire Island Inlet to Port Jefferson Harbor on Long Island and from New Haven, Connecticut to Sagamore Beach, Massachusetts including Block Island, Martha’s Vineyeard and Nantucket Island.  Most of the stronger winds are occurring over water, but a weather station at Nantucket, Massachusetts reported a sustained wind speed of 44 m.p.h. (71 km/h) and a wind gust ot 56 m.p.h. (90 km/h) on Monday.

Post Tropical Storm Hermine has not had the structure of a tropical cyclone for several days.  There are no thunderstorms near the center of circulation.  The taller clouds are all occurring west of the center.  The circulation pulled in drier air which has circulated into the core of the circulation.  An upper level low south of Hermine has generated southeasterly winds which are blowing across the top of the circulation.  The vertical wind shear combined with the drier air to prevent the development of new thunderstorms near the center of circulation.

The environment around Post Tropical Storm Hermine could become a little less hostile on Tuesday.  It will be moving over water where the Sea Surface Temperature (SST) is near 25.5°C.  As Hermine moves west the vertical wind shear will decrease.  However, the cyclone is surrounded by dry air.  If the surface low moves west, the complex environment could allow the system to maintain its intensity for another day or so.  If the surface low moves farther north, it will move over cooler SSTs and the wind speeds will decrease.

The upper low to the south of Post Tropical Storm Hermine and a ridge north of Hermine are combining to steer it toward the west-northwest.  That general motion is expected to continue for a few more hours.  As Post Tropical Storm Hermine interacts with the upper low, it could make a slow cyclonic loop.  On its expected track Hermine could move closer to Long Island on Tuesday.

Post Tropical Storm Hermine will continue to produce modest water rises along the coast.  In addition persistent wind and wave action will generate more beach erosion.

Post Tropical Storm Hermine Creates Coastal Flood Risk for Northeast U.S.

Although the structure of Tropical Storm Hermine changed significantly on Saturday and the National Hurricane Center designated it as Post Tropical, it still is creating a risk for coastal flooding for the northeastern U.S.  The size of the circulation of Hermine and its proximity to the U.S. is allowing its winds to push water toward portions of the coast.  The largest immediate risk is for the coasts of Virginia, Delaware and New Jersey.  When Hermine moves north, the greater risk will shift to New York, Rhode Island and Massachusetts.

At 11:00 p.m. EDT on Saturday the center of Post Tropical Storm Hermine was located at latitude 36.5°N and longitude 72.1°W which put it about 205 miles (330 km) southeast of Ocean City, Maryland.  Hermine was moving toward the east-northeast at 13 m.p.h. (20 km/h).  The maximum sustained wind speed was 70 m.p.h. (110 km/h) and there were wind gusts to 85 m.p.h. (135 km/h).  The minimum surface pressure was 998 mb.

A Tropical Storm Warning is in effect for the portion of the coast from Ocracoke Inlet, North Carolina to Watch Hill, Rhode Island including the Chesapeake Bay from Drum Point southward, Delaware Bay, New York City and Long Island.  A Tropical Storm Watch is in effect from Watch Hill, Rhode Island to Sagamore Beach, Massachusetts including Block Island, Martha’s Vineyard and Nantucket.

The circulation of Hermine changed from a tropical cyclone with a tight inner core to structure where area with the maximum wind speed is farther from the center.  In addition all of the thunderstorms near the center dissipated and most of the remaining thunderstorms are well northeast of the center of circulation.  The loss of tropical characteristics are the reason why the National Hurricane Center designated Hermine as Post Tropical.

Future changes of Hermine could continue to be complex.  Dry air has permeated the inner 100 miles (160 km) of the circulation which is devoid of any thunderstorms.  An upper level trough over the northeastern U.S. is forecast to move over the top of Hermine and cut off.  The would create a vertical structure which is the opposite of what is normally found in a tropical cyclone.  However, Hermine is moving over water where the Sea Surface Temperature (SST) is near 30°C.  A combination of cold air aloft in the upper low and warm SSTs could create enough instability to generate the development of new thunderstorms closer to the core of the circulation.  it is possible that Hermine could make a transition back to a more tropical cyclone like structure during the next several days.

The upper level trough is currently steering Hermine toward the east-northeast.  When the trough approaches Hermine, it will steer the storm more toward then north.  However, when the trough moves over the top of Hermine, the steering currents will be weak and Hermine could stall south of Long Island.  It is possible that the counterclockwise rotation in the upper trough could cause the storm to loop once or twice.  If Hermine makes a slow counterclockwise loop, it could move back closer to the coast of New Jersey on Monday.

The wind field in Hermine expanded during the structural changes.  Winds to tropical storm force extend out about 200 miles (320 km).  That makes Hermine about half as big as Hurricane Sandy was in 2012.

Hurricane Hermine Making Landfall in North Florida

After intensifying into a hurricane on Thursday, Hurricane Hermine is making landfall near St. Marks, Florida.  At midnight EDT the center of Hurricane Hermine was located at latitude 29.8°N and longitude 84.2°W which put it about 20 miles (30 km) south of St. Marks, Florida.  Hermine was moving toward the north-northeast at 14 m.p.h. (22 km/h).  The maximum sustained wind speed was 80 m.p.h. (130 km/h) and there were wind gusts to 95 m.p.h. (155 km/h).  The minimum surface pressure was 984 mb.

A Hurricane Warning is in effect from Suwannee River to Mexico Beach, Florida.  A Hurricane Watch is in effect from Anclote River to Suwannee River and from Mexico Beach to the Walton County/Bay County line.  A Tropical Storm Warning is in effect from Englewood to Suwannee River and from Mexico Beach to the Walton County/Bay County line.  A Tropical Storm Warning is also in effect from the Flagler County/Volusia County line to Duck, North Carolina including Pamlico and Albemarle Sounds.  A Tropical Storm Watch is in effect from Duck, North Carolina to Sandy Hook, New Jersey including the Chesapeake Bay from Smith Point southward and southern Delaware Bay.

The circulation of Hurricane Hermine organized quickly on Thursday.  It developed an eye with a mostly complete eyewall.  Spiral rainbands developed with strong winds in the eastern half of the circulation.  Upper level divergence to the east of Hermine pumped out mass and allowed the surface pressure to decrease.  The circulation is still asymmetrical with most of the stronger winds east of the center, but it looks a lot more typical of hurricanes that move toward the northern coast of the Gulf of Mexico.

Hurricane Hermine will weaken after it makes landfall.  It could interact with a cold front moving into the southeastern U.S.  It is possible that Hermine could develop a hybrid structure that is part tropical and part extratropical.  Hermine could have winds to tropical storm force as it passes over the Mid-Atlantic coast.  The stronger winds are likely to be out over the Atlantic Ocean and winds should be weaker farther inland.

An upper level trough is steering Hurricane Hermine toward the north-northeast and a general northeasterly motion is expected to continue for another 36 hours.  Later in the weekend a surface high pressure system could move north of Hermine and stall its progress.  Hermine could be stationary for a time.  On its anticipated track center of Hermine is likely to pass east of Tallahassee, Florida.  The center could pass north of Savannah, Georgia before coming near Charleston, South Carolina.  Hermine is likely to move near Cape Hatteras, North Carolina and out into the Atlantic Ocean.

Hurricane Hermine is capable of causing regional minor wind damage.  It is likely to cause widespread power outages.  The coast of the northeastern Gulf of Mexico is susceptible to storm surges and high water will effect that area overnight.  Locally heavy rainfall will create the potential for flooding.  When rainbands move ashore, wind shear could spin up tornadoes.  As Hermine moves near the Mid-Atlantic coast, easterly winds could cause water rises.

The Hurricane Intensity Index (HII) for Hurricane Hermine is 11.5.  The Hurricane Size Index (HSI) is 14.0.  The Hurricane Wind Intensity SIze Index (HWISI) is 25.5.  These indices are very similar to the ones for Hurricane Isaac before it hit the coast of Louisiana n 2012.  The HII for Isaac was 11.5.  Its HSI was 16.7 and its HWISI was 28.2.  This means that Hurricane Hermine is as strong and just smaller than Hurricane Isaac was just before it made landfall.  Hurricane Isaac did hit a more populated and more built up region.  Hurricane Isaac did 970 million dollars worth of insured damage.  It caused 407 million dollars to be paid out for flood insurance.  It is estimated that Hurricane Isaac caused 2.35 billion dollars worth of damage in the U.S.

Tropical Storm Hermine Strengthens, Hurricane Warning Issued

Tropical Storm Hermine strengthened on Wednesday evening and a Hurricane Warning was issued for a portion of the northern Florida coast.  A Hurricane Warning was in effect for the portion of the coast from Suwannee River to Mexico Beach, Florida.  A Hurricane Watch and a Tropical Storm Warning was in effect for the portions of the coast from Anclote River to Suwannee River and from Mexico Beach to Destin, Florida.  The Tropical Storm Watch was extended farther up the Mid-Atlantic coast.  The Tropical Storm Watch was in effect for the portion of the coast from Marineland, Florida to South Santee River, South Carolina.

At 11:00 p.m. EDT on Wednesday the center of Tropical Storm Hermine was located at latitude 25.8°N and longitude 87.0°W which put it about 295 miles (475 km) south-southwest of Apalachicola, Florida.  Hermine was moving toward the north-northeast at 10 m.p.h. (16 km/h).  The maximum sustained wind speed was 60 m.p.h. (95 km/h) and there were wind gusts to 75 m.p.h. (120 km/h).  The minimum surface pressure was 998 mb.

The circulation of Tropical Storm Hermine became better organized on Wednesday, but it is still not really well organized.  A tighter center of circulation developed.  However, the wind field is still asymmetrical.  The stronger winds are mainly east of the center and the winds are weaker in the western half of the circulation.  An area of strong thunderstorms developed near the center and another cluster of thunderstorms persisted southwest of the center.  There are not many thunderstorms northwest of the center.  There are some spiral rainbands, but they are fragmented.

Tropical Storm Hermine is in an environment that is favorable for intensification.  It is moving over water where the Sea Surface Temperature is near 30°C.  The upper level flow pattern is enhancing the divergence of mass to the northeast of Hermine.  The enhanced upper level divergence pumped out enough mass to allow the surface pressure to decrease by a few millibars on Wednesday evening.  Tropical Storm Hermine is expected to continue to intensify on Thursday and it should become a hurricane before it makes landfall on Thursday night.

The upper level ridge that was blocking a northward motion of Hermine has weakened.  So, the tropical storm has begun to more toward the north-northeast.  An upper level trough is expected to steer Hermine a little faster toward the northeast on Thursday.  On its anticipated track Hermine could make landfall somewhere between Apalachicola and Tarpon Springs, Florida on Thursday night.  After it moves across northeast Florida, Hermine could move near the coast of Carolinas on Friday.

Hermine is likely to be a hurricane when it makes landfall on Thursday night.  The core of the circulation which will contain the highest winds is likely to be fairly small and Hermine is likely to cause localized minor wind damage.  There will undoubtedly be power outages.  The coastline around the northeastern Gulf of Mexico is vulnerable to storm surges and Hermine will also produce a storm surge which could range up to 7 to 8 feet (2 to 2.5 meters) near where the center crosses the coast.  The storm surge will be less farther away from where the center makes landfall.  In addition Hermine will generate locally heavy rain which could cause fresh water flooding.  Directional wind shear associated with rainbands moving inland could spin up tornadoes in the eastern half of Hermine.

Joaquin Almost a Hurricane, Watch Issued for Central Bahamas

Tropical Storm Joaquin is on the verge of reaching hurricane intensity.  At 11:00 p.m. EDT on Tuesday the center of Tropical Storm Joaquin was located at latitude 25.8°N and longitude 71.7°W which put it about 360 miles (580 km) east of the Northwestern Bahamas and about 680 miles (1100 km) south-southeast of Cape Hatteras, North Carolina.  Joaquin was moving toward the west-southwest at 5 m.p.h. (8 km/h).  The maximum sustained wind speed was 70 m.p.h. (110 km/h) and there were wind gusts to 85 m.p.h. (135 km/h).  The minimum surface pressure was 988 mb.  The government of the Bahamas has issued a Hurricane Watch for the Central Bahamas.

The organization of the circulation of Tropical Storm Joaquin increased on Tuesday in spite of moderate amounts of vertical wind shear.  More thunderstorms developed near the core of circulation and a partial eyewall formed around the southern and eastern parts of the center.  Although it is more organized, the circulation is still asymmetrical and the stronger winds were found in the eastern side of the tropical storm.

A thin upper level ridge is east of Florida and clockwise flow around the ridge is producing northerly winds over the top of Joaquin.  Those winds produced moderate vertical wind shear on Tuesday but the shear appears to be decreasing with time.  Joaquin is over water where the Sea Surface Temperature is near 30°C.  As the upper level winds diminish, the environment favors intensification and Joaquin is likely to become a hurricane on Wednesday.  Joaquin will continue to be in an environment that favors intensification during the next several days.

A ridge of high pressure north of Joaquin is blocking it from moving north and the ridge is forcing the tropical storm to move toward the west-southwest.  That general motion is expected to continue for another 24 to 48 hours and it could bring Joaquin near the Central and Northwestern Bahamas.  When Joaquin reaches the western end of the ridge it will turn toward the north.  An upper level trough over the eastern U.S. will cause Joaquin to move more quickly toward the north at the end of the week.  On its anticipated track, Joaquin could be approaching the Mid-Atlantic Coast of the U.S. by the weekend.

TD11 Becomes Tropical Storm Joaquin

The circulation in Tropical Depression 11 exhibited more organization on Monday night and the National Hurricane Center upgraded it to Tropical Storm Joaquin.  At 11:00 p.m. EDT on Monday the center of Tropical Storm Joaquin was located at latitude 26.7°N and longitude 70.4°W which put it about 400 miles (640 km) northeast of the Central Bahamas and about 670 miles (1080 km) south-southeast of Cape Hatteras, North Carolina.  Joaquin was moving toward the southwest at 5 m.p.h. (8 km/h).  The maximum sustained wind speed was 40 m.p.h. (65 km/h) and there were wind gusts to 50 m.p.h. (80 km/h).  The minimum surface pressure was 1002 mb.

Tropical Storm Joaquin formed when an upper level low sat in place over warm Sea Surface Temperatures for a few days.  Transfers of momentum slowly increased the rotation in the lower atmosphere until a distinct center of circulation developed.  However, northwesterly winds in the upper levels created vertical wind shear that inhibited the development of the system.  Eventually, the wind shear decreased enough to allow more thunderstorms to develop near the center of circulation.  Condensation in those storms created a warm core in the middle and upper atmosphere and Joaquin began to intensify.  Now, upper level divergence is beginning to develop and the environment is becoming more favorable for intensification.

A ridge north of Joaquin is steering it slowly toward the west and that steering pattern is expected to continue for the next day or two.  An upper level trough approaching from the west is expected to turn Joaquin toward the north.  Guidance from numerical models is divergent.  Some models bring Joaquin to the Mid-Atlantic Coast while other models forecast Joaquin to move toward Long Island.  The future track of Joaquin will depend on how far west it moves before it turns northward and how strong it gets.